Loading [MathJax]/jax/output/CommonHTML/jax.js
본문 바로가기

Coursera 강의 정리/Machine Learning - Andrew Ng

Week 2

Andrew Ng 교수님의 Machine Learning 강좌 주요 키워드 및 내용입니다.

Linear Regression with Multiple Variables

Hypothesis, Cost Function, and Gradient

  • Hypothesis hθ(x)=θTx=θ0+θ1x1+θ2x2+...+θnxn
  • Cost Function J(θ)=12mΣmi=1(hθ(x)y)2
  • Gradient θj:=θjαδδθjJ(θ)=θjαΣmi=1(hθ(x)y)xj

Feature Scaling/Mean Normalization

Learning Rate

  • Low → Slow Learning
  • High → Divergence

Linear Regression with Polynomial Variables

Normal Equation

  • Optimizer Parameter θ=(XTX)1XTY
  • Invertible Matrix (XTX)1XTY Problem → Remove Linear Dependency, Reduce Number of Features

Gradient Descent vs Normal Equation

  • Gradient Descent → Large Number of Features
  • Normal Equation → Small Number of Features (Computationally Expensive to Calculate (XTX)1XTY)

Octave/MATLAB Tutorial

Vectorization Computation

'Coursera 강의 정리 > Machine Learning - Andrew Ng' 카테고리의 다른 글

Week 3: Logistic Regression (feat. Regularization)  (0) 2020.08.04
Week 1  (0) 2020.08.02