Andres Ng 교수님의 Machine Learning 3주차 키워드 및 간단 정리입니다.
Logistic Regression
Hypothesis, Cost Function, Gradient
- Hypothesis
$h_\theta(x) = \frac{1}{1+e^{-\theta^{T}x}}$ - Cost Function: Crossentropy
$J(\theta) = -\frac{1}{m}\Sigma ylog(h_\theta(x)) + (1-y)log(1-h_\theta(x))$ - Gradient
$\theta_j := \theta_j - \alpha\frac{\delta}{\delta \theta_j}J(\theta)$
$:= \theta_j - \alpha \frac{1}{m} \Sigma (h_\theta(x) - y)x_j$
Decision Boundary
Muti Class Classification
- One vs All Logistic Regression
Regularization
Prevent Overfitting
- Reduce Features
- Regularization
Regularization in Cost Function
- $J(\theta) = -\frac{1}{m}\Sigma ylog(h_\theta(x)) + (1-y)log(1-h_\theta(x)) + \frac{\lambda}{2m}\Sigma \theta ^2 $
'Coursera 강의 정리 > Machine Learning - Andrew Ng' 카테고리의 다른 글
Week 2 (0) | 2020.08.03 |
---|---|
Week 1 (0) | 2020.08.02 |