Andrew Ng 교수님의 Machine Learning 강좌 주요 키워드 및 내용입니다.
Introduction
Definition of Machine Learning
- Learn without being explicitly programmed
- For task T, with lots of experience E, performance P would be better
Categorization of Machine Learning
- Supervised Learning and Unsupervised Learning
- Regression and Classification
- Cocktail Party Problem
Linear Regression with One Variable
Univariate Linear Regression
- Hypothesis: $h_θ(x)=θ_0+θ_1x$
- Cost Function: $J(θ)=\frac{1}{2m} \Sigma_{i=1}^{m} (h_θ(x_i)-y_i)^2=\frac{1}{2m} \Sigma_{i=1}^{m}(θ_0+θ_1x_i-y_i)^2$
- Objectives: min_θJ(θ)
Gradient Descent Algorithm
- $θ_0 :=θ_0-α\frac{δ}{δθ_0}J(θ)=θ_0-α\frac{1}{m}\Sigma_{i=1}^{m}(h_θ(x_i)-y_i)$
- $θ_1 :=θ_1-α\frac{δ}{δθ_1}J(θ)=θ_1-α\frac{1}{m}\Sigma_{i=1}^{m}(h_θ(x_i)-y_i)x$
Convex Function
Stochastic Gradient Descent Algorithm
Linear Algebra Review
Matrix/Vector Calculation
Identity Matrix
Matrix Inversion
'Coursera 강의 정리 > Machine Learning - Andrew Ng' 카테고리의 다른 글
Week 3: Logistic Regression (feat. Regularization) (0) | 2020.08.04 |
---|---|
Week 2 (0) | 2020.08.03 |