Andrew Ng 교수님의 Machine Learning 강좌 주요 키워드 및 내용입니다.
Linear Regression with Multiple Variables
Hypothesis, Cost Function, and Gradient
- Hypothesis $h_\theta(x) = \theta^{T}x = \theta_0 + \theta_1x_1 + \theta_2x_2 + ... + \theta_nx_n$
- Cost Function $J(\theta) = \frac{1}{2m} \Sigma_{i=1}^{m}(h_\theta(x)-y)^{2}$
- Gradient $\theta_j := \theta_j - \alpha \frac{\delta}{\delta \theta_j}J(\theta) = \theta_j - \alpha \Sigma_{i=1}^{m}(h_\theta(x)-y)x_j$
Feature Scaling/Mean Normalization
Learning Rate
- Low → Slow Learning
- High → Divergence
Linear Regression with Polynomial Variables
Normal Equation
- Optimizer Parameter $\theta = (X^{T}X)^{-1}X^{T}Y$
- Invertible Matrix $(X^{T}X)^{-1}X^{T}Y$ Problem → Remove Linear Dependency, Reduce Number of Features
Gradient Descent vs Normal Equation
- Gradient Descent → Large Number of Features
- Normal Equation → Small Number of Features (Computationally Expensive to Calculate $(X^{T}X)^{-1}X^TY$)
Octave/MATLAB Tutorial
Vectorization Computation
'Coursera 강의 정리 > Machine Learning - Andrew Ng' 카테고리의 다른 글
Week 3: Logistic Regression (feat. Regularization) (0) | 2020.08.04 |
---|---|
Week 1 (0) | 2020.08.02 |